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TECHNICAL NOTE 3346

PREDICTION OF DOWNWASH BEHIND SWEPT-WING ATIRPLANES o
AT SUBSONIC SFEED

By John DeYoung and Walter H. Barling, Jr.

SUMMARY

A rapid method for estimating the downwash behind swept-wing air-
planes is presented. The basic assumption 1s that of a flat horizontal
sheet of vortices trailing behind the wing. The integrations for the
downwash are handled in a manner similar to both Multhopp's and
Weissinger's approximate integrations in theilr span-loading calculations.
The principal effects of rolling-up of the wake are treated as correc-
tions to the flat-sheet wake. A simple approximate correction for the
effect of the fuselage is applied. The agreement with available experi-
mental data taken behind airplane models is good. Computing forms are B
included together with charts of pertinent functions, so as to enable _
simple direct application. oo

INTRODUCTION -

The downwash induced by a lifting wing has, in the past, been pre-
dicted by considering the wing as a 1lifting line with a vortex sheet
trailing aft of the wing in a horizontel plane. It was assumed that
spanwise distribution of vorticity did not change with downstream posi-
tion and that the sheet did not roll up behind the wing. With these
assumptions, a procedure for determining downwash is given in refer-
ences 1 and 2. In references 1 and 2, the wing span loading is approxi-
mated by several horseshoe vortices. The total downwash is the sum of
the downwashes of the horseshoe vortices. It 1s apparent that such a
procedure can be extended to swept wings by using swept horseshoe vor-
tices. The arithmetic of this procedure is, however, rather tedious
and leborious. In reference 3, a more rapid method iIn the form of an
influence-coefficient approach is presented for the downwash at the
center of the wake. References 1 and 2 also investigated the limitations
of representing the lifting surface by a lifting line, and of the effects
of the rolling-up of the trailing sheet. It was concluded that both
effects were negligible for the then conventional elrplane configurations.

At the present time, the use of low-aspect-ratioc plan forms and
occasionally of further rearward positions of the tail has made neces-
sary a re-examination of the assumption that the trailing vortex sheet
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can be considered nonrollling-up. An analysis of the rolling-up process
is given in reference 4 which reveals that the trailing sheet becomes
rolled-up at shorter distances behind the wing as (1) aspect ratio
decreases, (2) 1lift coefficient increases, and (3) span loading increases
outboard and decreases inboasrd. It is apparent that the downwash fields
determined on the assumption of the flat tralling vortex sheet or a com-
pletely rolled-up sheet (the simplified cases) omit wings of aspect
ratlio of about two to four at moderate or high CL's.

The purposes of this report are, (1) to make avallable an influence-
coefflcient type of method of computing the downwash behind swept wings
having arbitrary spanwise loading, a procedure that will be quicker and
simpler to use than methods summing up the downwash due to elemental
horseshoe vortices, (2) to estimate the principal changes in the down-
wash field due to the rolling-up process, and (3) to suggest a simple
first approximation to the downwash at the tall due to a fuselage. The
effect upon the downwash field due to substituting a 1ifting line for
surface loading will also be investigated and an approximate method for
teking this effect into account will be presented for wings of low aspect
retio.

PRINCIPAIL: NOTATION

B2
A aspect ratio, 5
agn influence coefficients for a swept load line plus a swept trall-

ing vortex sheet
(These coefficients act as integration factors of the wing load-
ing at station n +to obtain downwash at position (T,7n,Q).)

an influence coefficlents, similar to agn, but for only an unswept
trailing vortex sheet (no bound vortex

b wing span messured perpendicular to the plane of symmetry, £t
c locel wing chord measured parallel to the plane of symmetry, £t
Cav average wing chord, %v £t
1.2
c=d
J . c%an

(e}

mean aerodynamic chord, N
flc dn

local 1lift

cy local 1lift coefficient,
qc
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Kn

Xy¥s2

1ift

wing 1ift coefficient, oS

lift-curve slope, per radian or per deg

integration factor for interpolating downwash in the vertical
direction

emplrical relationbgiving the effect of sweep upon the rolling-up,
£ = 1-0.0075 (Agg + T°)

r

trength factor of the ti i —_—
streng actor o e p vortices, T = 0)

strength factor denoting loss of vorticity of the trailing sheet
at span station n

spanwise loading coefficient or dimensionless circulation along

wing quarter-chord line, cy é%-or %%

G’(ﬂ) at span station 1 = cos on

8

CzC
spanwise loading coefficient for unit 1lift, (——) or
2A CL cavmy

EE-Gn where n refers to the span station n = cos -3

free-stream Mach number

free-stream dynamic pressure, Ib/sq £t

radius of fuselage, Tt

wing area, sq Tt

free-stream velocity, ft/sec

downwash, positive downward, ft/sec

right-hand Cartesian coordinate system with x positlive down-
stream and y positive to the starboard with the origin at

the apex of the wing quarter-chord line (See fig. 1.)

vertical distance in wing semispans measured from extended chord
plane, positive upward

inclination of wing from zero-lift attitude, deg
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slope of camber line at trailing edge relative to free stream, deg
AT

circulation, £t2/sec

angle of downwash, positive downward, redlans or deg

sweep angle of the wing quarter-chord line, positive for sweep-
back, deg

tan~t <F3%%1%>, deg

tilp chord

taper ratio,
root chord

. b ¥ 2z
dimensionless Cartesian coordinates
? v/2° v/2’ v/

longitudinal position at which sheet 1s essentlally rolled-up
into wing tip vortices

e
b/c

lateral position of center of wing-tip vortex,

dimensionless longitudinal coordinate, measured from the 1lifting
line (&€ - 1 tan A)

trigonometric spanwlse coordinate (cos™ 7), radians
height above trailing sheet, { - (g

height above wing tip vortices, § - §,

Subscripts

average

tip vortices

fuselage
integers corresponding to span stations given by % = cos %%’
or mn = cos %%-(For nor v=1, 2, 3, or L My OF Ny = 0.9239,

0.7071, 0.3827, or 0.)
pertaining to downwash at the sheet or displacement of the sheet

wing trailing edge
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PHYSICAL PROBLEM AND BASIC ASSUMPTIONS

The physical picture is one of a lifting surface shedding a trail-
ing sheet of vortices. As the traliling vortices are left farther behind
the wing, the sheet of vortices 1s displaced downward in varying amounts
depending upon the span station considered, that is, it assumes a curved
shape. While this displacement is going on, the vorticity in the sheet
is continually shifting from the sheet toward the tips or edges of the
sheet. The lifting surface and the trailing vortex sheet asre inclined
with respect to the free-stream direction.

z

f y

Sketch (a)

The first assumption for the analysis will be that all of the chord-
wise 1ift is concentrated at the chordwlse center of pressure which will
be taken as the wing quarter-chord line, Second, it will be assumed that
the flow on the wing is not separated. Third, it will be assumed that the
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downwash due to a symmetrical sheet can be approximasted by a horizontal
flat sheet passing through the symmetrical sheet at the lateral station
where the downwash 1s to be computed. It should be noted that at

Arbitrary shaped sheet

Substitute flat sheet

~— Y

Sketch (b)

each 1 station, the horizontal flat sheet is given a different vertical
location and thus some sllowance i1s made for the shape of the sheet.
Fourth, it wlll be assumed that the vertlcal-longitudinal inclination of
the system has no effect upon the downwash. Hence, the real system will
be approximsted by & horizontal flat system passing through the real
system at the downstream station, x, at which downwash is to be computed,
as is shown below. The coordinates of the real and substltute systems

Approximate te
\\ PP system
~ Real system
~ '_\\\
S—

~ x .

Sketeh (c)

are shown in figure 1. It should be noted that these four assumptions
are identical with those made by Silverstein and Katzoff in references 1
and 2. The first two assumptions are common in serodynamilcs and the
limitations are fairly well known for the higher aspect ratios. The
first assumption will now be further investigated for wings of fairly
low aspect ratio.

Two wings having taper ratios of O and 1.0, aspect ratio equal to
2.0, and sweep angle of 56° were investigated. Each wing was assigned
both cotangent-type chord loading and uniform chord loading. The span-
wise loadings were obtained from reference 5. For each wing and chord-
wise loading, the downwash in the wake, e€g, was computed with each of
three alternative approximations; namely, the chordwise loading was
replaced, respectively, by a single lifting line, by three lifting lines,
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and by five 1lifting lines. The strength and chordwise positions of the
lifting lines were set by dividing the chord into equal segments and
finding the 1ift and center of lift of each segment. Each lifting line
was treated as a flat, horizontal vortex system in the & = 0 ©plane.
The downwash angles of the lifting-line systems were added and the sums
are plotted in figure 2 for four spanwise stations.

FPigure 2 indicates that the single 1lifting line does not give
accurate downwash predictions just aft of the trailing edge of the wing.
The downwash fields for the wings of equal A are essentially the same
one mean chord (one semispan) aft of the wing trailing edge. This con-
currence at one mean wing chord aft agrees with the two-dimensional
example of reference 1, For cotangent chord loadlng, the five-lifting-
line method very nearly predicts e/a equal to unity at the wing trail-
ing edge. This can be considered as a check to the approximation since
the flat-plate downwash must be equal to a at the trailling edge.
Examination of figure 2 shows that the curve of downwash obtained by
using one lifting line is translated forward a nearly constant longitu-
dinal distance from the curve of downwash obtained by using five 1ifting
lines. In figure 2(a), this distance is one eighth the mean wing chord.

In reference (1), contours of downwash angles due to a two-
dimensional Clark Y airfoil section are compasred to contours of down-
wash angles computed for a lifting line at the c/h point. If the lift-
ing line 1s shifted back to the(3/8)c point, the shifted field agrees
well with that of the girfoll section even very near the trailing edge.
From this, it would appear that the downwash field due to surface loading
might be well approximsted for all wings by using a single lifting line
with all longitudinal distances reduced by (1/8)cgy, or replacing T by
T - (1/4)(c/b)gy. It should be noted that this correction is of signifi-
cance only in vicinity of the trailing edge.

The third assumption has been consldered by comparing the results
obtained by using the assumption against results calculated for an ellip-
tically shaped sheet whose ratio of minor to major axes was O.Lk. At
1 = 0, 0.383, and 0.707, the difference of the results was less than the
differences found in the examination of the first assumption. At
1 = 0.924, use of the above third assumption did not compare well with
the results for the elliptically shaped sheet. However, at low angles
of agttack, since the distortion of the sheet is small the downwash can
still be computed at 7 = 0.92L4, The fourth assumption has been checked
by numerical computation for a 60° sweptback wing of aspect ratio equal
to 3.5. It wes found that provided that € of the noninclined system
is taken as w/V rather than +tan~i(w/V), the difference between the
downwashes was less than the differences noted in examlination of the
first assumption. This appears to hold true up to sbout a = 20°.

Thus, throughout thls report, € will be taken as w/V and the subject
is thus treated as if only small angles were Iinvolved.
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It should also be noted that these four assumptions are commonly
used in the calculation of wing span loading. As a result, the "non-
rolling—up"l system can be treated in a manner analogous to Multhopp's
(ref. 5) or Weissinger's (given in ref. 6) approximate integrations in
their calculations of span loading. However, a principal problem not
encountered in span-loading work is the downwash at arbitrary vertical
locations.

Generally, the amount of rolling-up present 1s so small that the
foregoing assumptions are sufficient for good answers. However, as
CL/A increases, an increasing amount of rolling-up appears and a cor-
rection must be made for this effect. The principal features of a
trailing-vortex system where the rolling-up is conspicuous are, (1) the
vorticlty becomes vertically displaced and shifts outboard from the
plane of symmetry, and (2) the wing tip vortices trall back approximately
in a horizontal plane which is parallel to the free stream. The center
of the sheet, however, is stlll displaced downward. As the vortex sheet
is left farther behind the wing, the tips of the sheet roll up and form
concentrated tip vortices. An outward motion of the vorticity in the
sheet between the tip vortices results in less vorticity in the mid-
semispan regions. These two changes in vorticlty configuretion can (in
the main) be taken into account by making a fifth assumption, (1) a
vertically displaced tralling flat sheet having a reduced amount of
vorticity, and (2) a pair of tip vortices which lie in a horizontal plane
and whose strength is drawn from the sheet. With this arrangement, the
sheet can be handled in much the same fashion as the flat sheet, that
is, by using the first four assumptions. The tip vortices can then be
handled as a separate computation.

Tip vortex

Substitute system

[ Real vortex sheet Weakened flat sheeot

Sketch (d)

At various distances behind the wing, the rolling-up is in varlous
gtages of development. To obtaln an accurate approximation, one should

lNonrolling—up system assumes that the tralling vortex sheet has
the same lateral distribution of vorticity at all distances behind the
wing as at the wing trailing edge. However, it need not be flat although
for determining downwash it 1s assumed flat.
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consider the trailing system in longitudinal segments, each segment
having a different amount of rolling-up. The downwash would then be the
v sum of the downwashes of all the segments. However, this involves an
exorbitant amount of work and to obtain a practical solution, a sixth
assumption will be made. It will be assumed that the entire trailing
system behind the wing is of one form, namely, the form which the real
system has at the selected downstream location £. The substitute
rolling-up system is then pictured as shown in sketch (e).

¢
) 7

[

= '@9}

@

%4
Sketch (e) B

This sixth assumption was examined by numerical computations for a 60°
sweptback wing of A = 3.5 using the segment approximation. It was found
that the results of the use of this assumption were within the accuracy
of the theory for thils case.

While the foregoing assumptions aid in simplifying the physlcal
picture, additional informestion is necessary 1ln order to calculate the
v effect of the rolling-up process. The relative strengths of the vortex
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sheet as- well as the tip vortex and also the position of the tip vortex
for various distances behind the wing must be obtained. From an analysls
of the dowhwash behind a series of swept-wing plan forms obtained from
large-scale wind-tunnel data, an empiricel relationship was developed
giving the approximate lateral position of the tip vortex. From this, a
method is developed for obtaining the relative strengths of the tip vortex
and flat sheet.

As will be shown in the text, the use of such a simpllified substi-
tute system ensbles one to express the downwash due to a rolling-up
system as being the flat-sheet results plus an additive correction
(generally, fairly small) which, for the cgse checked, predicted the
downwash well and goes to the right limit as the rolling-up becomes
complete.

ANATYSIS AND DEVELOPMENT OF METHOD

The first part of the analysis is concerned with the flat-sheet
procedure, that is, evaluating the downwash using the first four assump-
tions. The location of the wake relative to the tail will be considered
and some assessment of the effects of the fuselage upon the downwash is
to be made. In the second part of the analysis, the rolling-up of the
trailing vortex sheet is considered.

Flat-Sheet Procedure

General calculation of downwash.- The downwash at a poilnt (x,y,z)
due to a swept-vortex system (assumed for the present at zg = 0) is
equal to the sum of that due to the swept-load vortex (or bound vortex)
and that due to the trailing vortex sheet.
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Az

11

(x,y,2)

Trailing vortex
/Bound vortex x \-C\dr\_ )\ sh':et
~N

\C\ S
\Zz

Sketch (F)

The induced velocity due to an arbitrary elemental trailing vortex

extending to infinity downstream (see sketch (f)) is given by Glauert
(ref. T).

aw % (cos 6; + cos 83) cos Yy (1)

where 65;—>0. The vertical induced velocity at (x,y,z) due to the
small element ds of the load vortex (see sketch (g)) is given by

_ T'h ds cos ILf-b

a
v hrrs (2)
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{x,y,2)

njo

Sketch (g)

The total downwash due to the entire vortex system is equal to the
integration over the wing span of the sum of equations (1) and (2) (which
are converted to rectangular coordinates by the relations indicated in
the respective sketches). Further, the integral of equation (2) is inte-
grated by parts such that the new integrand contains the factor dF/dﬁ.
Then in terms of dimensionless relstlons, the total downwash can be
written as:

<=

1 (n-R)Gr(f)aq 1 . _
_“\[1 92+(n-ﬁ)2+2“~/; Lgp G'(n) df (3)



a4’ -

where for 1 >0,
(0-7) [ + (|n]-[a])tan A1 [T + (|n] —n)tanA](EB—:_EK -1- {n|tan®A -Ttan!9

o® + (n "ﬁ)a [T+ (|n|—1'|)tan A]2 + 02/(cos®A) n -

JIv + ([a]-[i])tan A]Z + (n -9)2 + @2

Lsp, =

and for <0,

(n-7) [+ + ([nl-]3D)tan &1 [+ (In]+n)tan A]( s |'l|tan2A+'rtanA>
cos<A

2% + (n -7 [T+ {|n{+n)tan A]Z + 03/(cos2A)

gy =

JIt+ (n]-[iDtan A% + (n - 7)2 + a®

[r+ (Inl-n)ten A)(T tan & + |n|tan®A + 1) LI+ (In] + n)tan AJ(v tan A + [n]tan®A-n)

[v + (|n] -n)tan A)® + 0%/{cos2A) [T + {|n| +n)tan A1%+a2/{cos2a)

J('r+ [n|tan A)Z + 0% + @2

N -1
PE (5)

Ghtt NI VOVH

€T
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Both integrals of equation (3) are, in general, difficult to inte-
grate by snalytical means. The numerical integration method used herein
is that employed by both Multhopp and Weissinger. In fact, equation (3)
appears in reference 6 for the case of Q = O. As was done in refer-
ence 6, the downwash integrals can be written as s sumation of products
of mathematical coefficlents, &gn (ayn in refs. 3 and 6), and the span-
wise loading, Kn =(c1¢/CL cay) As is shown in Appendix A, the numeri-

cal integration of equation (3? can be put into the form (using & four-
term expression) .
c - .
€ = g = E% agnKn : (6)
n=1
where for n =1, 2, 3, and 4, the Kp's correspond to values of
cie/Creay at 7 = 0.92k4, 0.707, 0.383, and 0, respectively. The agp's,
like the Lgy in equation (3), are solely dependent, for a given sweep
angle, upon the location of a point (7,n,Q). Thus, after the agy's
have been evaluated, one may compute the downwash using any desired span
loading. To facilitate computations, the agp's (from general equations
of Appendix A) have been computed for points at 1n = O, 0.383, 0.707, and
0.92L iying behind the quarter-chord line and for two vertical locations
relative to the vortex sheet, @ =0 and & = £0.5, that is, at the sheet
and one-half semispan gbove or below the sheet. The computed values have
been plotted in figures 3 and 4. Thus, given a plan form, span loading,
and the deslred longitudinal position, one obtalns values of agp from
figures 3 and 4 and applies equetion (6) to obtaln the downwash.

It is obvious that the accuracy of a summation depends upon how many
terms are considered. For the four-term summgtion used herein, accept-
ably accurate answers are obtalned in most cases without an unreasonable
expenditure of labor. However, for cases In which the spaniise loading
differs from that expressible by a four-term sine series, the four-term
summstion may not be acceptably accurate as it would tend to gloss over
such changes in span loading. The derlvation of the agp's in Appen-
dix A h&as been left in a fairly general form so as to allow the reader
to compute the agp's for summations involving more points across the
span. ’ ' - C

Choice of vertical coordinates.- Three possible vertical coordinates
are the parameters Q, {, and Z. The vertical position of the downwash
point for .these three is measured respectively from (1) the trailing
sheet, (2) a horizontal plane (parallel to free stream) through the apex
of the load line, and (3) the extended chord plane. - Each has some advan-
tages. Wlth Q, the downwash field is symmebtric about the value & =0
(for a flat sheet), or about the trailing sheet. Also, computations are
simplified with this paremeter and the downwash varies linearly with Cp.
On the other hand, with §, the downwash field 1s referred to a fixed
coordinate system, independent of angle of attack and sheet position.
With Z, the downwash field is referred to the coordinate system (extended
chord plane) of the airplane but is dependent on angle of attack. Thus,
with Z, the downwash fleld 1s described relative to the tail plane.
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The relations between Q, £, and Z are:

o)
t

=t - t.(n)
=0 + Cs(n) + & tan « (7)
£+ ¢t tan a

£ + (T + n tan A)tan «

[
] I

When the downwash has been computed for varlous §'s and the dis-
placements, { (1), have been evaluated, the field can be plotted against

a choice of &, £, or Z.

Lateral interpolation of downwash.- The agn values of figures 3
and b4 allow a direct evaluation of downwash at four span stations. Some-
times 1t is of value to know the downwash at other span positions or to
plot a more accurate lateral variation of downwash. For these purposes
a lateral interpolation formula is convenient.

The product €(®) sin ® can be expanded in a Fourler series, the
coefficients of which can be numerically evaluated in terms of the four
known values of €,. Then (for symmetric distribution of dovnwash)

7
€, sin
e(P)sin @ = sin B, @ }: -3L—IT—22 sin p,Q, (8)

where @ = cos™! n. Then the downwash at a given 7 poéition can be
expressed as the sum of products of tabulated numbers and values of the
known downwash. Thus

€ = Hyey + Hpe, + Hgeg + Hoe, (9)

where the H's are tebulated in table I for n = 0.098, 0.195, 0.290,
0.556, 0.831, and 0.981, and € are the known values of downwash &t

1 = 0.924, 0.707, 0.383, and O.

Exemination of table I shows that in the range of 17 from O through
0.556, H; 1is very small, less than 4.5 percent of the sum of Hy, Hg,
and H,. For this range of 17, one can simplify the calculations by
letting €; = €5, then equation (9) reduces to, for 0 <1 < 0.556,

€ = (Hy + Hy)e,+Hgeg + Hygy _ (10)

This method of interpolation, in effect, puts a curve of the form

e(n) = ey + ean® + e,n* + en°
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(where the e's are constants) through the known values of € at the
four regular span statlons. Of course, equation (10) goes through only
three of the four known values. - -

The lateral interpolation formula applies for a given @ along an
arbitrary &(n) curve (e.g., at constant & or at a constant T).

Vertical interpolation of downwash.- The agp values of figures 3
and bk allow a direct evaluation of downwash at O = 0 and *0.5. To
present agn charts for many  values is too cumbersome. However,
with only two values of (I available, an interpolation procedure is a
prime necessity.

Reference 8 presents a simple method in which downwash, for small Q,
1s expressed as a Taylor series of IQI. Reference 7 contalns a simple
equation of downwash as a function of g for large Q values. With
these functions of @ and the computed valué of downwash at £ = +0.5,

a fitted function of Q@ 1is developed in Appendix B that approaches the
correct functions at low and high values of '@ and falrs through the
computed value at Q = +£0.5. ' : _

The vertical interpolation function is glven as

4
c
€ = C,e(7,m,0) + Czc-:('r,n, %)+ ﬁ z DnKn (11)
n=1

where C,;, C,, and Dp are tabulated in table ITI for several =Q values;
¢(1,1,0) and e(T,n,t1/2) are the values of downwash computed by equa-
tion (6) at Q = O, and *1/2, respectively.

Vertical displacement of the sheet.- The vertical displacement of
the sheet is glven by the integration in the longitudinal direction (for
constant 1) of the downwash in the sheet from the wing trailing edge to
the T and n position of the downwash point. Thus, for a given 1,

T .
() =t - [ eglrplslrp)] any (12)
TR

where §s is the verticel displacement of .the sheet, Tp is a dummy
variable of integration, and QTE is the vertical displacement of the
wing treiling edge. Now Q 1is defined as § - &g, then S (7p) in the
integrand corresponds to the value Q = 0. With the flat-sheet assump-
tions, €g (the downwash angle at the sheet, i.e., @ = 0) is independent
of any vertical parameter snd can be integrated to evaluste {g(T).

~

o]

|

i Yi

oy
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The integration in equation (12) can be simplified considerably by
approximating e€g with an integrable functlon of Tp. An analytical
study of figure 2 indicates that the downwash behind the surface-loaded
wing varies closely sas 1/72, also that the single-load-line method
underestimates the downwash near the wing. The simplicity of the 1/72
behavior suggests a very convenient curve-fitting function for downwash
that can in addition be made to correspond with the downwash near the
wing as predicted by surface-loading methods. Thus it will be assumed
that the downwash is given by the following function (9 = 0, and using
the dummy variaeble Tm)

Ep

€g(Tp) = E; + —
(TT )]

(13)

where E;, Ep, and J are undetermined coefficients. For the determina-
tion of E, and E;, two conditions are given by

at Tq = Ty GS(TT) = O

I
-
-

at T €S(T = €_, known downwash at the ? (14)
position &t which dis-
placement 1s to be

computed J

)

With E, and Ez determined it remsins to evaluate [J. Comparison of
the results of several values of J with the downwash fields given in
figure 2 shows that for J = c/2b very good agreement is obtained even
with eg ‘taken &t a distance of two semispans aft of the wing trailing
edge.

With the value J = c/2b and the determined values of E, and E,,
equation (13) becomes

es(TT) =

anacEyi MDA IR

(-4) (m-3) (=9
(TT 2

Inserting equation (15) into equation (12) evaluates the vertical
displacement.

(15)
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L= g - — (&) (m - %) om]

(r-5)(m-%)

where €4 1s computed at any T, n position but with Q = 0.

(16)

For a wing having an sirfoil section such that the load line is at
the one-quarter chord and with A = @, eqpation (16) simplifies to

ahiar

s = - | (T + 1 tan A)a - 2b (o - eg) +

< e
T+ —
2b
(;_‘j + 1 tan A) (‘tan a- cx) (17)

It should be noted that the last term of equation (17) is negligibly small
for many practical cases. - — .

Equation (16) expressed as vertical dilsplacement of the trailing
sheet or wake from the extended-chord plane is given by (see eq. (7))

(5 (g LA ()
(e - %) (em e - o) | -

For a wing having an alrfoil section such that the 1lifting line is
at the one-quarter chord and for ogm = o, ®Tguation (18) simplifies to

Zg =
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For many practical cases, the last term of equation (19) can be
neglected.

Correction for the Effect of the Rolling-Up of the Sheet

General snalysis.- If the vorticity shed from the wing is now con-
sidered to make up a weakened sheet and two tip vortices, as discussed
earlier, then the correction, Ae, to be added to the downwash cslculated
in the foregoing sections csn be written as

Ae = eWS + € - eTS

where €yg 1is the downwash due to a weakened vortex sheet; e, is the
downwash due to a pair of tip vortices. The weakened sheet and the tip
vortices extend from a longitudinal position corresponding to the
quarter-chord point of wing tip, downstream to infinity. The quantity,
€rgs is the downwash due to the portion of the flat sheet aft of the
quarter chord of the tip. Letting

€T = €15 - €wWs

A€ becomes

A€ = €¢ - € o (20)

which gives Ae equal to the downwash due to the tip vortices minus the
downwash due to the loss of vortex strength in the trailing vortex sheet.

The downwash due to only a trailing sheet extending from the quarter
chord of the rearmost wing section can be deduced from equation (1) by
considering an unswept wing. Replacing & by (& - tan A) then refers
the coordinates to the quarter chord of the wing tip. Following the
same mathematical procedures as in Appendix A, it is shown in Appendix C
that the downwash due to such a trailing sheet can be reduced to
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£
c
L _2% Z ap K, (21)

The difference between €p1gt gheet 819 €yegkened sheet? €p» caR be con-
sidered as the loss of downwash due to the weakening of the sheet. This
weakening can be taken into account by multiplying Kp in equation (21)
by & term called a strength factor.

Thus, €mp reduces to

C

B

€T=-

i aqy Fsnkn | | (22)
n=1

where Fg,, will be called the strength factors of the sheet and denotes
a loss of strength in the trailing vertex sheet. Thus, 1-F,, 1s the
proportion of vorticlty left in the sheet. The aTn's are pgotted as
a function of (& - ten A)/8 in figure (5).

The downwash due to a pair of tip vortices is equivalent to the
downwash due 1o a trailing sheet behind a uniformly loaded wing of span
Neb. Thus, €, cen be derived from the preceding work. The circulation
of the tip vortices is FCCL/ncA where F, denotes the proportion of
wing vorticity in the tip vortices. Expresgions for €,n A/FCCL are
derived in Appendix C and values are presented in figure g. This parem-
eter is plotted as a function of (1/pn.)(& - tan A) for various values
of n/nc and Qc/nc. The quantity, 9, (vertlcal height relative to the
tip vortices), is equal to § - o tan A or Q@ + {5 - a tan A, where
-a tan A is the vertlcal location of the tip vortex which will be pre-
sented shortly.

As yet, Fgp and F, have not been determined and, as was stated
earlier, one must determine the locations of the tip vortices before
proceeding to find the strength factors.

Iocgtion of tip vortices.- Reference b presents an approximate
(curve-fitting) equation for the lateral position of the tip vortices.
This equation is given by

2/3

- &
e =1 -(1-n,) tanh Lot (23)
@ §c - &



NACA TN 3346 21

where

5.05 (1 - n, )%= )
Ee - & = (24
m_ &(®)

? EO:\/l—cosq)

where Mew = l/K4 and represents the asymptotic position of Ne» and §O

indicates the start of the rolling-up process. ' In the last part of
Appendix C, §c is reduced to the more convenient form

L (1 - ne )% (é_) o

© % 0.7315K; - 0.3959 Kp + 0.3030 Kg - 0.1400 K,

It should be noted that equations (23) and (24) were derived for a wing
having an unswept trailing edge.

It has been found from experiment that, for a& swept wing, the inward
movement of the tip vortices is much slower than is indicated by equa-
tion (23). The reasons for this slowness are not clear. However, the
lateral positions of the tip vortices appear to be strongly dependent
upon the sweep of the wing trailing edge.

The following two considered opinions of the sctions of the air flow
behind such a wing are given here. First, in the region between the two
swept wing panels, the vortex sheet (principelly near the plane of sym-
metry) is above both the load vortex of the wing and the wing tip vor-
tices and thus is subjected to an inward velocity component. This inward
velocity tends to keep the vorticity in the midspan region out of the tip
vortices and thereby increagses the roll-up distance. A second action
concerns the wing tip. For a sweptback wing, an outward velocity over
the wing tips 1s generated due to the lateral pressure gradient resulting
from the staggering of wing sections. This flow over the wing tip is here
-assumed the primary action that results in a further outboard location of
the tip vortex relative to that of an unswept wing. Similar regsoning
leads to converse effects for sweptforward wings. The velocities involved
in the sbove phenomena are difficult to determine. A problem remains,
however, in that an expression for Ne (compatible with experiment) must
be found.

The problem of theoretically determining Ne Tor a wing with swept
trailing edges is even more difficult than for an unswept wing. There-~
fore, an empirical equation will be used herein. One approximate method
that tekes into account the effect of the initial outward latersl
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location of the tip vortices (due to the sweep) is to multiply (1 - ncm)
of equation (23) by

f+ (1/10)(E - tan A)

1+ (1/10) (& - tan A)

where f ..is a function of the sweep of the wing trailing edge. At

large values of €.~ tan A, this factor approaches unity and Ne
approaches l/K4. In the mjdspen region as mentioned previously, there

is an inward velocity imposed upon the traillng vortex sheet which results
in a longer roll-up distance. It is found that thls can be taken into
account by multiplylng the argument of +tanh 1n equation (23) by £2
vhere f..here is the same as the previous f for convenlence of empiri-
cal evsluation. ~The effect of this multiplicetion is to increase the
roll-up distance by a factor of (l/f)s. Thené assuming the tip vortex

to start et the quarter chord of the wing tip
becomes

f+ (L/10) (£ - tan A) < £ - tan A>2/3

1.
1 - — )tanh f2<

Kge

1+ (1/10)(& - tan A) E. - tan A

(26)
vhere &, - tan A is gilven by equation (25) for £, = tan A.

Equation (26) can be solved for £, since, for small values of the
argument in tanh, the argument itself can be taken. A cubic equation
results from which. f can be determined from experimental measurements
of Ne. Flve wings with sweep angles of the trailing edge ranging from
--lLl.38 to 51.9° were used in determining f. To the precision of the
experiments, f 1is given Dby,

=1 - 0.0075 (Apg + T°) (27)

It has been assumed that f 1is independent of aspect ratio. It -
gshould be noted that £ does not qulte reach unity at .A,_[lE = 0. Thus

equation (26) does not quite reduce to equation (23) for wings with _
unswept trailing edges. The difference, howéver, is small and is not :
consldered important.

2This is in contradistinction from reference 4 which assumes the tip
vortex to start at the wing trailing edge. . -

(¢, = tan A), equation (23)
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It should be realized that other expressions for 1n, can be
obtained. 8Since only the numerical value of 17, 1s important, the use
of other expressions of 17, will not affect the material following.
Iater in the discussion section, it 1is shown that values of 1, from
equation (26) compare well with the limited available experimental
results.

The vertical position of the tip vortices can be determined by using
the £ifth assumption in the previous section. Then, since the tip vor-
tices are assumed to start at the quarter chord of the wing tip, the
vertical displacement of the two tip vortices is epproximately given by
the vertical position of the quarter chord of the wing tip, or

by ¥ - « tan A (28)

It should be noted that far behind the wing, after the rolling-up
process 1s essentislly completed, the influence of one tip vortex on the
other causes a displacement that varies linearly with £. The use of
equation (28) therefore is restricted to locations near the wing.

Strength factors of the trailling sheet and wing tip vortices.- The
rolling-up trailing-vortex system is greatly simplified with the vortex
system divided into two parts, (1) a pair of rolled-up wing tip vortices,
and (2) a vortex sheet stretching laterally between the two wing tip vor-
tices (see sketch (d)). The problem is to determine what proportion of
the totel vortex strength esch should have. A method attributed to Lotz
and Fabricius in reference 4 (given originally in ref. 9) is readily
applicable for unswept wings. A modified and somewhat simplified pro-
cedure of this method i1s developed here for swept wings.

The basis of the method depends on two vortex laws applied to the
rolling-up trailing-vortex system extending downstream from each half of
the wing. These laws will apply aft of the quarter-chord point of the
rearmost wing section where the tralling system may be considered free
and two-dimensional. These laws are:

(1) The total vortex strength shed from each half of the wing is
invarient with distance downstream.

(2) The total lateral moment of the trailing vortices shed from each
half of the wing (or the total 1ift impulse) is invariant with distance
downstrean.

Let Fg(n) denote a proportional loss of strength in the trailing
vortex sheet, then 1 - Fs(n) is the proportion of strength remaining in
the sheet. Also let F, denote the proportion of strength in the trail-
ing tip vortex.
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The vortex laws yleld two results. First, since the total vorticity
is constant, the amount of vorticity in the tip vortlces equals the total
amount lost by the sheet, or '

ot X(n) _ '
e [ 7o 22 Jen =5, (29)

Second, the moment gained by the tlp vortices equals that lost by the

sheet, or
Fcnc=fl [ Fg(n) = (n) ] ndn =_f Fg(n) ﬂ-)—dn (30)

Equations (29) and (30) are not sufficient to determine F, and
Fg(n). However, the form of Fg(n) can be selected so as to represent
the physical actions of the rolling-up sheet to a reasonable approxima-
tion. In any roliing-up problem involving two maln vortices, the vortex
sheet in the outer span regions is acted on by the tip vortices more than
by those in the inner reglons. The outer vortex sheet rolls up at a
faester rete than the lnner. For these reasons the decrease of vorticity
in the sheet, denoted by TFg(n) should become larger as_ 7 becomes
larger. A simple expression for Fg(n) which approximates these phenomena
1s

Fg(n) = Fg(o) + Ay (31)

Fg(n) at n = cos P can be written as Fgp, thus

Fgn = Fgq + A cos®op (32)

where Fg, 1s evaluated by equation (29). The parameter, A, can be
evaluated by using equation (30). Thus

Fs4 =FC

Ne =~ Teg

t 2 K(n)
° K(o)

>
1]
0

(33)
dn

L3
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b The integral can be evaluated numerically by use of equation (C23) and
has the value
¢ 1
K K
f n2 K(n) dn = 0.1283 L 4+ 0.1388 =2 + 0.0531 =2 (3%)
A K(o) Ky Ky Ke

Combining equations (32), (33), and (34) results in

(1.Ky - 1)cos® <_n§15>
0.1283 K, + 0.1388 K, + 0.0531 Kg

(35)

Fgp =Fo | 1 +

The strength factor of the wing tip vortices is assumed to be
dependent upon the wing loading distribution and the lateral position of
the tip vortices, 7e. The latter gives a measure of the extent the sheet
is rolled-up. Near the wing, the tip vortex would (at least) equal the

s wing circulation at 1 = 7o, the center of the tip vortex. At most, the
tilp vortex would equal the wing circulation at the span station corre-

) sponding to the inner edge of the tip vortex. The inner edge, here, is

\ roughly estimated as twice the distance from the tip to 1, thus located
at 1 =27, - L.

Now, in the derivation of the sheet strength factors, some sheet
strength is left in these outer regions. Therefore, the strength of the
tip vortices will not be taken as the larger of the above two values
but will be taken as the sum of the vortices inboard to n=(37,-1)/2
which is midway between 17, and 2f, -1. Thus (again, near the wing),

K(n) 3ng -1
Ff Md,]:i(_z_l (36)

a (o)
<sn:-1> y K(o

Far downstream, when the rolling-up is completed
Fo =1 ’ (37)

Between the above asymptotlic values, assume F. to vary as the
product of wing loading at (3nc—1)/2 and a linear function of 1n,.



26 : - NACA TN 3346

Then

K<3ﬂc'l>
Feo = ——'2_ (kl + kzﬂc) (38)
K(o)

The two constants, k; and ky, are evaluated by the two conditions given
by equations (36) and (37). The resulting equation for F, 1is

S . (5 N ]
K( "; ) . 3n;-1>
Fo = — 1+ (1 - 1) (39)
K(O) 1 - ncw
- .
where
-1 cye -1
K(Bn—c——> is the value of L at 7 = 3¢ s
2 L Cav 2
3Me -1 c.c .- 3N -1
K(%—) is the value of —t at 5 = _CL_,
Cy, Cav. ' 2
and -
_ 1
oo X(o)

It should be recognized that other procedures that might determine
the strength factors more accurately can be used.in the present calcula-
tions. However, it should be borne in mind that a fair amount of approxi-
mation in the strength factors can be tolerated since a small percentage
change in the factors results in an even smaller percentage change in the
computed downwaesh. In a later discussion, it is shown for an example
wing that experiment and the above theory compare well with regard to the
vortex strength in the tip reglon. The expréssions presented also have
the merit of belng computationslly simple. :

Vertical location of the sheet during the rolling-up process.- When
the sheet 1s rolling up, both the downwash induced at the sheet (g = 0)
and the location of the sheet, Cs, will be different from the flat-sheet
results. As an approximation for the rolling-up sheet, the downwash due
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to the rolling-up sheet is computed at @ = 0 wusing the §S .value given
by the flat-sheet method. Substitution of this value of downwash in the
displacement equation evaluates the Es for the rolling-up sheet. This
value of Cs is used throughout the balance of the rolling-up computa-
tion, replacing also the Cs in the flat-sheet downwash; that is,

for the flat sheet is then the same as @ for the rolling-up sheet.

The rolling-up correction procedure, including the recomputation of
gs, is illustrated in a computing form to be presented shortly. The
change in location of the vortex sheet is generally quite small in the
inboard region, becoming larger in the outboard region.

Special loadings.- Span loadings which have maximum values at span
stations other than at the plane of symmetry cause the equations for the
strength factors to break down and in some cases to predict the lateral
tip vortex location as belng outboard of the wing tips. ©Such span load-
ings would have complicated rolling-up characteristics since each change
in sign of the slope of a loading distribution indicates the possibility
of a rolled-up vortex eventually appearing. At the wing-tip region the
loading gradient is very large, approaching infinity at the wing tip;
hence, the rolling-up is more pronounced at the tips. The loading gradi-
ent in the wing region between two meximum values of loading in general
never becomes comparable to that at the tips, or even large. Hence, the
rolling-up in this region will be very slow as compared to that at the
wing tips. Thus it can be assumed for these special loadings that only
the vortex sheet outboard of the maximum loading positions will roll up.

Then, when determining a rolling-up correction, the loading distri-
bution to be used will be that with a straight faired line connecting
the two maximum values of loading. The ordinstes of the entire curve
are then proportionstely reduced so that the area under the curve is
equal to the original unit area, as 1s i1llustrated below.

AU L]

AK~ ~

Kma _
K rax - Kf?au

0 Ul LO o 7 /0

Sketch (h)

The ares under the new faired loading is made a unit area by divid-
ing the loading distribution by 1 + fAnzﬁKidn. The 1lift coefficient
o
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used for the rolling-up method incresgses to the wvalue

n
Clyo1l = <l +fA AK d'q> Cr, (40)
[}

where the subscript, roll, indicates the value of 1ift coefficilent and
loading used to compute the rolling-up correction. _ -

Effect of Fuselage

While a large part of the downwash at the tall is due to the wing,
the presence of a fuselage will alter the downwash to a sufficient degree
so that downwash due to the fuselage should be considered. ZFor computa-
tional purposes, downwash due to a fuselage &t the tail of an airplsne
can be separated into two parts: that due to the fuselage at an angle
of attaeck and that due to the fuselage at zero angle of attack. Two
effects are present for the fuselage at an angle of sttack. The span
loading for the wing-body combination will be somewhat different than
for the wing alone. This altered loading, together with the correspond-
ing distribution of Mimage" vortices will affect the downwash in the
region of the tall. If the fuselage diameter is not too large, the load-
ing can often be approximated by the wing-alone spen loading. However,
in view of the pronounced effect of span loading upon.the downwash, it
would be preferable to use the span loading corresponding to & wing-plus-
fuselage combination. The other effect of the fuselage st angle of
attack is that resulting from the "ecrossflow" component normal to the
axis of the fuselage in the region of the tail. The iImportance of these
effects depends largely on the ratio of fuselage diameter to wing span.

A further discussion is given in reference 10. At zero angle of attack,
there is a disturbance of the flow field due to tapering of the fuselage.
The influehce of the fuselage on the downwash is further complicated by
flow separation on the after portion of the fuselage, but this effect
will not be considered. ' ) '

The relative importance of the above effects depends largely on the
particular configuration being investigated_and the spanwise region of
interest. For the experimental dats available for the present investiga-
tion, a calculation of the influence of the fuselage at zero angle of
attack appeared adequate, _

Since the fuselage dlameters of most alrplanes are small compared
to the length, slender-body theory will be used to approximate the flow.
near the fuselage. Equation (10) of reference 11 gives the complex

potential in the cross plane (normal to the longitudinal axis of the ___;"

fuselage) of a slender body at an angle of attack. For a body of
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revolution at zero angle of attack, the real part of this equation
reduces to

P = 8o Inr

where ag = Rf(de/dx). The radial velocity 1s then given by

The downward vertical component gives the downwash.

wg _ -zRp(dRp/dx) _ -zRp(dRe/dx) (b1)

A I‘2 y2 + Za

where ¥y and z are measured from the center line of the body. It should
be noted that at the after part of the body de/dx is negative for a
tapering body and that the equations are for bodies of revolution.

Effects of Compressibility

The effect of compressibility on downwash 1s tsken into account by
use of the Prandtl-Glauert rule. That is, the longitudinel coordinates
are simply stretched by & factor l/ﬁ and cy is replaced by Becj.

The compressible and lncompressible pasrameters are listed below.

Incompressible Compressible )
(replace the incompressible values by:)

ey, Cp, or CLQ Bey, BCp, or ﬁCLCI

A BA

A Ag = tan-1[ (ten A)/B]

E or T £/ or /B ?(42)

n yl

¢ ¢

¢ (chord) e/B J
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The displacement values, QS or Zg, are not affected by B except .
insofar as €g 1s affected by compressibility. This €g can be calcu- S .3
lated by making the above substitutions. The T values in the Q or Zg
equations are then not replaced by T/B. The downwash for the case of +
sonlc speeds 1s calculated by teking the limit as B—>0. The resulting
simplified downwash equations are given in the rear portion of Appendix A.

The values of downwash when g = O are not here represented as the true

downwesh but rather as a simple limit point that aids in fairing s Mach
number curve of downwash.

Computation Forms ~ - ' ' -

It 1s expedient to summarize the present calculations in a simple
computation form. The forms for the computation of dowvnwash angle due
to a flat sheet, and the correction due to s rolling-up sheet, are pre-
sented as follows:

Flat-sheet procedure.-

Flat -sheet downwash Vertical displacement
7 T" '
Column no. I 2 3 4 5 6 7 8 9 {0]
Column_detinition | ) | Ou | Qs | Ga3 | Osa | € /C, A | Ap |A2gtlZs/c | bs/c,
. o-
Operation to From figures 3 & 4 for 4 Eq. | Eq.
A
be performed gven A,T.7,80 i'inz_luln"n below | below ®@ |@+@|tr+nton
' C /tana
0
*05 -~
Span loading
coefficients L l ' | j

Ki Ko Kz Ke

For @=a;; and T measured from < ; A ond A, are:

- -%) tena

Bfeg) e
Co (r+f

For a#a,. see equution(fB)

l
tan a
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Vertical interpolation of flat-sheet downwash
I 12 113 114115 16 i7 I8 9 20 21 22
Q | D | D2|Ds | Ds Ci | Ce €loc | Z/e, |8 /e,
3
From Table I LS Constant @'c‘ aQ Q2
) h 5= >DnKn Lineo +(9Q) 2L +
for given 7) an with 7 f@[f—‘_]n__gl@) @ ® CL 9 CL
from &)
0O | x X X X X X _ x X X (from®)—
$0.1
+0.2
203
05| x «x X X X x x x x {from @)-—-
108 L [ 1 | |
Ki Kg Kz Kg
Rolling-up correction procedure.-
Required information Trailing —sheet loss
= 77 =
K Te
C‘-a= Equation (39) F¢= 23 | 24 | 25 26 27
CL= L Jay [arp) Ora| O €y
a (radians)= Fsi® Ff°m figwe 5 for _% i‘amFmKn
E=_____ Feo® given 7, £-tand, Q ne
E—tanA= Equation (35) F53= g:
equation(26) Ne= Fs4' 0
57!“:(5' tan A) = -02 |Xxxxxx (same as 0.2)-»
-05 Ixx xxx (same as 0.5)—~

1 ] | l
FuKi FeeKe FeaKs FseKe

For span loadings with maximums not at 7)=0, see “Special Loadings"

Corrected verticdl displacement

28| 28 30 3: 32 33 34 | 35
1 Q. 'Q"’/‘l)c 1’;;: € | € |€sh: cs
@CL+ a8 « @ GLFe ®Cu+ Ap‘@
atanA | 7 N A ‘@CD@ é"-t-:na
0 |

# Interpolated

a
e

v L(g-tan4), a

¢

from figure 6 for given
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Tip-vortex contribution Total downwash
36 37 s 29 40 4| 42 43
€
Q @\gc A AR | R I -
+ @ @ct..
Gfe
f:?yt | * @91kﬂ 2949 @9 ¢, éﬁ*c:ﬁ“@ﬁ:@ﬁ
0.5
0.2
o
-0.2
-0 |
DISCUSSION

This section evaluates the prediction of downwash due to wings
alone, due to wing-fuselage combilnations, and due to rolling-up of the
vortex sheet by comperison with experiment. Alsoc, for & pair of plan
forms, downwash contours predicted by flat-sheet theory are compared
with the flat-sheet theory corrected for rolling-up effects.

Comparison With Experiment

Wing alone.- Comparison of estimations from flat-sheet theory with
some measured values of downwash from reference 12 for a swept-wing plan
form is glven in figure 7. For this wing, the computed rolling-up cor-
rectlon was very small; hence, only the flat-sheet results are presented.
The computed values make use of the calculated wing loading distributlon
obtalned from reference 6 and alsoc of the experimental loading distribu-
tion,s which was somevwhat different. The computed downwash distributions
due to both loadings are presented and the two span loadlngs are shown
in Pigure 8. The general conclusion is that the downwash prediction at
the plane of symmetry is critically dependent upon the loeal loadling
distribution. This is because the downwash contributions of the vor-
tleity on either side of the plane of symmetry are additlve for a sym-
metrical span loading. At outboard stations, the downwash is not so
dependent on the local loading since the vorticlity to the inboard slde .
results ln an upwash which tends to cancel the downwash from the out-
board side. It is noted that at the outboard stations the experimentsl
and theoretical vorticity (or loading) distributions are more nearly
similar. The effects of loading distribution are most prominent at the
sheet. Pigure T shows the experimental downwash from contour plots and
the downwash computed using the experimental span loading ‘to be in good
agreement. The experimental and computed locatlons of the wake center
are also shown to be in good agreement.

3This "experimentel™ span loading was estimated from consideration
of experimental results of numerous wings.
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Wing plus fuselsge.- In figure 9 g comparison of the computed down-
wash (wing-alone flat-sheet results plus the fuselage "taper" correction)
and of experimental downwash is presented for a particulsr configuration.
The wing is characterized by en aspect ratio of 2.88, taper ratio of
0.625, and the quarter-chord line was swept back 50°. The wing was set
at 2° incidence relative to the Puselage which had a length of 3.02 wing
semlspans and a meximum diameter of 0.297 wing semispans. The downwash
is given at 1.239 wing semispans behind the quarter chord of the c.

The fuselage taper (dRp/dx) wes about -0.2. In figure 9, it is shown

that the downwash due to this wing-fuselage combingtion is predicted with
reasonable accuracy by the results of the flat-sheet method plus the down-
wash due to the fuselage taper. At n = O, the computed and measured
downwash above the fuselage are in good agreement at the lower angles of
attack. Below the fuselage, the maximum difference is of the order of 1°,
The poorer agreement at o = 13° may be due (in part) to a change in span
loading from that which existed at the lower angles of sttack.

At 1 = 0.383, the computed and measured downwash is in similar
agreement. At o = l3°, the possible change in span loading results in
some discrepancy. However, as was pointed out in the comparisons of
wing-alone downwash, this change in span loading does not result in as
large a change in downwash at 17 = 0.383 as occurs at 7 = 0. At
1 = 0.383, the Puselage correction is quite small.

In summary, in figure 9 it 1ls shown that good predictions can be
made by adding the downwash due to fuselage taper with the downwash due
to wing alone.

Rolling-up correction.- In figure 10 are presented measured values
of downwash from reference 13 together with three methods of prediction
for a wing with A= 60°, A = 3.5, A= 0.25, and Cp, = 0.5. The three
methods are: ~flat-sheet theory, rolling-up corrected flat-sheet theory,
and a completely rolled-up theory. The latter is simply the downwash
due to the swept bound portion plus two concentrated tip vortices located
at mg, = 0.864. It is seen that the rolling-up method agrees well with
experiment and that the agreement is best at the more outboasrd and at
the more rearward positions. It is interesting to note that only the
rolling-up correction method agrees well with experiment. For £ equal
to 2.71 and 3.43, neither the flat-sheet results nor the results for the
completely rolled-up vortex yield maximum downwash engles within 10 per-
cent of the experimental values. At £ = 2.02 and 1 = 0.383, the experi-
mental downwash angles appear questionable because the rolling-up method
gave virtually exact agreement with experiment at Cp, = 0.25.

In applying the rolling-up correction, it is important that the
lateral position of the tip vortices be closely approximated. In fig-
ure 11 is presented a comparison of measured (refs. 12, 13, and 14) and
computed locations of the tip vortices. The computed locations of the
tip vortices are based on empirical equation (26). Figure 11 shows good
agreement for a number of downstream positions for several swept wings.
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The agreement 1s within the precision of the experiments. It should be
noted that these are the same wings which were used in determining the
empirical counstant, f, at one-half semispan behind the guarter chord of
the wing *tip.

It is also important that the method yleld a reasonable estimate of
the strength factor of the tip vortices. It is difficult to determine
the precise strength of the tlp vortex from experiment because the vortex
sheet 1s connected to the tip vortex. An approximaste check can be
obtained by determining the total vorticity in the region of the tip vor-
tex. The experimental total can then be compared to the theoretical
total. To check the totals for the 60° swept wing, the downwash contour
plots of reference 13 were used.

Very near the tip vortex (Just outelde of the maximm € wvalues
where the sheet contributes little), the downwash due to the tip vortex
is approximately given by

Svortex
ﬁ(nc - 'fl)

e

<i=s

Let

Gvortex
(cr./24)

Values of p ranging from 0.57 to 0.63 were obtained grom the experi-
mentsl downwash contour plots for & = 3.43 and a.= 12 by using various
n's. _

The theoretical totel i1s taken as the theoretical Fe plus the
theoretical smount of vorticity left in the weakened flat sheetoin the
region between 7 = (37,-1)/2 and 1.0. At & = 3.43 and a = 127, the
computed Fe 1s 0.48 and the computed total in the weakened sheet from
n=(3ns ~1)/2 to 1.0 is 0.136. This theoretical total of 0.616 is com-
patible with the experimental total and is considered a reasongbly good
check on this phase of the method.

Comparison of the Downwash Due to a Flat Sheet
and That Due to a Rolling-Up Vortex Sheet

The foregoing has indicated that the rolling-up correction method _
gives an sccurate picture of the downwash fields behind swept wlngs. As
is shown in reference 4, C7, and A are. important parameters in the
rolling-up. Hence, it would be of interest to compare the flat-sheet
results and the rolling-up results for a few_combinations of Cp and A.
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For this comparison the followlng wing-tail combinations were
selected.

—— a— —— — /

A=20 A= 40
A= a0° A= a0°
A= 05 A=05

Sketeh (i)

Contoured downwash flelds at the tail location as predlcted by flat-sheet
theory and by the rolling-up corrected flat-sheet theory are shown in
figure 12 for two values of Cy, O.t and 0.6.

In figure 12(a) (A = 2.0), the rolling-up is prominent and three
principal effects are noteworthy: (1) in general, there is an upward
shift of the downwash field in the more outboard areas; (2) the magni-
tude of the downwash around 17 = 0 is reduced; (3) in the mid-semispan
region (around n = 0.5), the vertical distribution of downwash 1s more
uniform than for the flat sheet. In general, the maximum values of the
downwash for the two systems are not greatly different, but thelr loca-
tions do dlffer appreciably.

In figure 12(b) (4 = 4.0), it is apparent that the amount of rolling-
up present is quite small and the three effects mentioned above are
scarcely discernible. In fact, these two cases, Cp, = O.4 and 0.6, could
be consldered as borderline cases., It is realized, of course, that near
the tips (viz, n = 0.9), the rolling-up may have a sizable effect. The
discussion here is limited to the more inboard locations as shown 1in the

figure.
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For other wings with the seme Cr, sweep, tail position, and taper
ratio, calculations indicate that for aspect ratios about one (or less),
the trailing-vortex system ig, in effect, rolled-up into two tip vortices.
For aspect ratios larger than four, the rolling-up present is even less
than that present in figure 12(b).

Thus, the general range of aspect ratios for which the rolling-up
correction should be computed is roughly bounded by A=1.0and A = 4.0
at Cp = 0.6; that is, (3/2)<(a/cy) <6.

CONCLUDING REMARKS

An influence-coefficient-type method is presented for the rapid
estimatlon of the nonrolling-up downwash fields behind swept-wing sir-
plenes. Using similar techniques, an addltive correction for the effects
of rolling-up is also presented. For the cases compared, the downwashes
predicted by the sbove procedures agreed well with experiment.

To facilitate computetions, charts and graphs of pertinent functions
are presented together with tested computing forms. It 1is believed that
the procedures set forth will require less time than procedures employ-
ing horseshoe vortices or discrete vortices. To obtaln a simple and
rapld method, a number of approximations and assumptions were made. Each
approximation and assumption was investigated by various means and the
range of applicability is discussed. Some findings of the present =~

resegrch are as follows.

By approximating the longitudinal variation of downwash behind
surface-loaded wings by & simple function, & very simple expression has
been derived for the vertical location of the wake center. It is shown
that the location of the wake can then be written as a linear function
of the downwash at the center of the wake. This downwash ls easy to
determine end thus the wake locatlion can be determined very rapidly. A
comparison of experimentsl waske locations and computed locations lndi-
cates that satisfactory predictions are made. _

In the mid-wing region (around 17 = 0), it is found that the com~
puted downwash neasxr the wake is crxritlcally dependent upon the span load-
ing used in the calculations. Thus, one should obtaln the best availlable
spen loading before computing the downwash at the tail.

The experimentally determined paths of the tip vortices trailing
behind several wings have been considered. It has been found that wing
sweep had an appreciable effect upon the mechanics of the rolling-up
and slowed the inward motion of the tip vortices to a conslderable
extent. - An emplrical correctlion has been developed which allows one to
determine the tip vortex locations wlith due allowance for the effect of
wing sweep.
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Aside from an effect of the fuselage upon the wing span loading, it
appears that an important effect of the fuselage upon the downwash at
the tall can be considered as an additive correction to the wing-alone
downwesh for wing-fuselsge combinations. This effect (due to the taper-
ing of the rear portion of the fuselage) appears to be valid for combins-
tlons wherein the diemeter of the fuselage is fairly small compared to
both the length of the fuselage and the span of the wing. The correction
(obtained by slender-body theory) is expressed in s simple form and has
been shown to be in good agreement with experimental results on one air-
plane model.

Ames Aeronautical Lsboratory
Netional Advisory Committee for Aeronsutics
Moffett Field, Calif., Sept. 16, 1954
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APPENDIX A
INTEGRATION OF EQUATION (3) TO OBTAIN DOWNWASH

A general equation for the flat-sheet downwash is presented in the
section "ANATYSIS AND DEVELOPMENT OF METHOD." The purpose of the present
section is to reduce the downwash integrals of equation (3) to the form
of equation. (6). It wlll be shown in the later part of this section that
in the specilal case of sonic speeds, the downwash integrals simplify con~
siderably. The downwash due to a completely Polled-up vortex system can
be consldered as a speclal case of the flat sheet; namely, that of a
wing with rectangular span loading. Thus, the flrst portion of Appendix A
is concerned with the general flat-sheet system, whereas the second por-
tion considers speciflc cases.

General Solution

Representing the arbltrary loading distribution by a series and
replacing the lateral integration varisble by a trigonometric varisble
allows the first integral of equation (3) to be evaluated analytically.
However, the second integral of equation (3)_can only be evaluated numerl-
cally and may be evaluated in the same manner as that of reference 6.

The first portion of the following will be concerned with the analytical
integration of the first integral of equation (3).

It can be shown that G!'(®) can be represented as

m m
ar () = r% z GnZ' By sin pOp cos 1P (A1)

n=1 ul=l
Then, the first integral becomes

1T (cos @ - n)Gt(P)dp T
1 f = Z bgn Gn (82)

T 2% + (cos ¢ - 1)°

where

1 S 1 ™ (cos @ - n)cos p,PaP
basn = -~ Z My SIn 1,9n | T f ; (a3)
Hi=1 ©

Q2+ (cos @ - 1)2
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Equation (A2) gives the integration to the same degree of accuracy as
the vorticity distribution is given by the series of equation (Al). It
remsins to evaluate the integral of equation (A3). Define

% (cos @ - p)cos p,PAaQ
r, =1 f 2 3 (ak)
LA Q% + (cos @ - 1)
With the relatlon for odd p3
lJ-l‘l
Hl'l
cos P =2 Mt cos(i,-21)@
11 (m,y-1)18
equation (A4) can be written as & recursion formula. Thus
“1'1
Bq=1 Byt
Ty =27 (e - ) - Z Ti(a,-0t M2 (43)
l=1
where
T cos“lcp a
Jp_l = 'l-‘ f d (A6)
T 2 2
o (cosg-m)=+ g
Now Jp can be expressed in a recursion formule, by dividing the denomi-

nator o% the integrand into the numerator, then

C
n-r
2

= - (n21L 02
Ty +ongy - (a3, (AT)
0 5 for W, =o0dd

L _

where nlr are binomial coefficients where

even

n

1-11’2

and
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The integrations represented by J, and Jy; are found as follows:

_ ¢ - 1-u2 . 2du
Iet u = tan — then cos ¢ = 5 49 = == . With these substitutlons,
2 1+u 1+u

equation (A6) for u; = O takes the form

7, = f“ a(u?) . f“ ACRLICS
o [p+(a) (u®)+(r) (1®)3]/(2®) % p+(a) (Wd)+(r)(u2)®

A

These definite lntegrals are tabulated in reference 15 and give the value
for J, as ) :

; QR +O/E)
° JeedE
where
8
p =0% + (1-1)® > (#2)
q = 2(Q% + 7%-1)
r = 02 + (1+1)2
A similar procedure gives J
5 QD) - WINT)
* q+24/pr (49)

where the p's and q's and r's are the same as those in equation (A8).

With tebulated values of Jyu, (from egs. (A7) through (A9)), the
application of the recursion formule of equation (A5) evaluates the
desired integral of equation (A4). For symmetric loading, values of
Ij, for odd py are given in the followlng equations:
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I, =1-(Q%+13)Jds + nJy 3
Ig =- (1-14n2+403) - (n2+0%)(-3+ % - 4a%)J, + n(-3+n® - 120%)J,
Is = [1-12n2+160% + (12 -9673)g2 + 160%] -

(02 +03) [5-20n2 + 16n%+ (20 - 960%)0% + 160*] J5 +
0[5 - 2012 + 16n* + (60 - 160n2)@% + 80a%] I
I, = [-1 + 2hn2 - 80n*% + 6418 - (24 - 48072 + 960n*)a% + ?(Alo)

(-80 + 96073)qa% - 640°%] - (42+03) [-T+56n2 -1127¢ +

6un® - (56 - 67202 + 9607%)Q% + (-112 + 960n2)a* - 64051 J, +
n[-7+56n2 - 1129% + 64n® - (168 - 112002 + 13khn*)eZ +
(-560 + 22hon2)Q* - wu8Q°1 g,

J

For numerically evaluating Iul for high u;, it may be simpler to

use equation (A5) directly; that is, to tebulate numerical values of dJy,
from equation (AT), then with a numericsl value of I, to tabulate suc-
cessive Ty,.

With Iy, defined, equation (A3) becomes

m

1 _
bsn = = py sin b ®pTy (A11)

Hy=1

The coefficients bsn can be found for arbltrary & and 1. The value
of the integrals of equation (42) is the summation of the axrbitrary
loading, Gn, and the bgp values. The integral of equation (42) gives
the downwash due to a continuous trailing vortex sheet at an infinite
distance aft of any wing and also twlce the downwash at the load line
for unswept wings. For the case of elliptic loading, the downwash 1s
given directly by I, alone, a result derived by other procedures in
the past (e.g., see ref. 7). For symmetric loading (Gp4y-n = Gn, and
only odd {,), equation (A2) becomes

mtl

* ot (@)ap o
1 L/n cos @ -1 999 _ j{: 2BgnGn (A12)

T o 0%+ (cos @-1)7

n=1
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where with p; odd

Bsn = 2bsn, n f_E%;
(A13)
m+1L
= 'b n = —
sn» 5

The numerical integration of the second integral of equation (3) is
obtained from the asppendix of reference 6 by substituting Lgu &iven by
equations (4) and (5) for L(n,f) in reference 6.

In summary, for symmetric loading, the downwash integral of equa-
tion (3) becomes - - : : : -

m+l
2
€ = X = a.snG'n (A_l}_'_)
\i

where
M-1

=
1 ) .
a = 2Bgn + : E: fauAL
sn sn (ML) npAbsp
K=0

m .
- _2 m-l
Bgn = m My sin “1q)nIl~11’ n % -3
H,=1,044 -
Bsn ml
= =2 = Bt
Bs’m+1 2 or n 2

and Iy, is given by equations (A10) and (A5)

fnu = efnu: for =n # Ei;, p>0

2
= fny » n = le: k>0
= fnp s n # E%;, p=0
fa :
= 2# , n = m;l’ Lo=0



2
— Hy sin p,®p cos py@,

fop = m1

Hy=1,0dd

vhere @p = %: end un = m'“_:T' Table TII liste values of fnp. for several values of M and m.

(- [7 + (n-f)tan Al . t(n-fi,, + T sin:A cos A)

Q24 (n—ﬁu)a 02 +72 cos® A
Alsp = = 2 =2 2 )
J[T + ("l—ﬂpﬁ"an AlE+ (T]"'T]p,) + Q
(n+A ) v+ (n-Ny )tan A} (v +2n tan A){(n - fiytTeinA cos A - 27 cosZA)
(12+(r|+ﬁp.)2 Q% + (r+2n tan A)® cos2A
JIT + (n-i,)tan A% + (147,)2 + 02
T{n+T sin A cos A) N (T+2n ten A)(n +7 sin A cos A -21 cos®A)
Q2 1 7200824 92+ (T+2'q tan A)ECQSEA _ n- ﬁp, n+ ﬁp
J(T + n tan A)2+ q2+92 a® + (T]"T]p_)z Q% + (7]+ﬁp,)2
where

fi, = coe M cos @
H M+l K

ot NI VOVN

£n
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A convenlent closed form of fp, is given by:

-2(~-1)® sin Py

fny = [sin ¢, sin (m+1)Pu(2 + cos 2Py +cos 29,) -

(m+1) (cos 2¢, - cos 2¢“)2 :
(m+1) cos @, cos (m+1) ¢, (cos 29, - cos 29,)]

for

for

n+
_2(-1) M sin P, €05 @

cos 29y - cos 29,
Special Cases

Compressibility considerations and downwsash sl sonic speeds.- The
effects of compressibility, subject to the limitations of the linearized
compressible flow equation, can be included in the previous work by the

substitution of the parameters % and AB= tan'l<m—nBA> , for & and A,

respectively. It.can be seen that since the Bgp coefficients are inde-
pendent of £ and A, they are unaffected by compressibility and that only
the Lep - function is affected by compressibllity.

The 1limit value of the downwash at sonlc speeds can be found by sub-
stituting into equations (3), (4), and (5) the parameters' 7/p and Ag
which replace T and A, respectively, then_determining the limit as B—>O.
With the liwit

lim
B—>0

—_— tan A (A15)
cos AB . .



equation (3) at sonic speeds becomes

h

(416)

T + -[f])tan A -7 o\ e
wv_ 1 f ([n] I_l) oA G af -
voETJ, [v + (In]-]i[)ten A] | % + (2-7)
= - -
[T + (|n] -n)tan A]jtan A fl T+ [n] tan A T+ (|n]-[f])tan A o1 () ai
- n) dan +
(7 + (|n] =n)tan A1+ 07 ten®a Yo | Iv+ [n] tan A |r + ([n|-|])tan 4]
[t + {|n] +1)tan AJtan A fo T+|n| tana 7+ (In|-[f])ten A o1 (R) &
(7 + (|n| +n)tan A)2+Q2% tan®A J h-|'r+ |n] tan A| |7+ (|n|—|ﬁ|)tanAL
The form of equation (Al6) can be simplified by considering three longitudinal regions of
downwash. These regions can be pletured as follows:
o | O
Region I
I, N
,’, N A
, -
4PN\ Region IT
7% AN :Q'
| Il Fegrion I
:N‘ i —[:\ ’;-
Sweptback Swepffamard
wing wing

gketeh ()

oHEE NI VOVN

o
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For the three regions, equation (A16) gives

Region I:

<=

Region II (for sweepback):

T+[n[ten A

:_;_=2_.'i tan A —J—J——G'(ﬂ)dﬂ*’
2
ltan A Q% + (n-R)
tan A

2[7 + (|n]-n)ten Alten A GQ”LzrlltinAD

[T+ ([n] -n)tan AJ2 + Q2 tan®A

2[t + (|n]+n)tan AJtan A G(—’

T+ |nftan A l
tan A )
(A7)

[T +(|n| +n)tan A2 + @2 tan®A
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Region IT (for sweepforward):

T+lﬂltanA

tan A

L f - T! G‘(_ =
R)aq +
en -1 Q% + (1-7)% !

<=

1
n-1 L (R aR
f Q% + (n-7)® Gr{en +

l'r+ [n !’Gan A
tan A

o[t + (|q] -n)tan Altan A G(|’1|l|—tﬂél>
+

tan A

[T+ (l'ql -q)tan A]2 + Q% tan® A

tan A

20t + (|n] +n)tan Altan A G(_lgllLtMD

[T+ (|n] +1)ten A)® + Q% tan®A
Region III:

w_Ll -0 g
: ,r[ o ¢ ( (a18)

+ tan A
The symbol G(i-IT 1 D denotes the value of G at that
span station. tan A
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For symmetric loading, Region II given by equa.tion (Al6) simplifies
(since G(-n) =G(n)) to:

Region II (for sweepback):

T+7 tan A
tan A - A -
L f —1 -1 o (f)af +
T+ntanA]l Q% + (n-7)2 -
tan A
tan A[ T . T4+ 21 tah A ]
2+ 02 tan®A (T + 2q tan A)? + Q2 tan®A

a ( tan 4 (A19)
tan A
Region II (for sweepforward):
T+ ten A
v 1 f ten A _tj__gt(ﬁ)dﬁ +
LA R + (n-7)2
n -1 =Yam
—_—— Gt dn +
j_; T+ tan A Q2 + (n-7)2 (fi)e
tan A
tan A[ T N T+ 21 tan A :|
72 + 0% tan®A (T + 23 tan A)® + Q% tan®A
T+ 7 tan A
G|
tan A
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For the Region IT for the case of sweptback wings, the downwash can be
written as (symmetric loading)

_| 71 _tan Al
w W l f tanA. T] - n _ _
v - \F "X ———— G* (7)af -
v <V>III x -1 Q% + (Tl-'fl)a
1t n -7 .
I f —————5 G'(R)aq +
r+n tan Ay @ + (0-7)
tan A l
tanA‘: T T + 21 tan A
T ™ + 02 tan®A ('r + 21 tan A)2 + Q2 tan®A
¢ T+ 1M tan A tan A
tan A l (A21)

The two integrals can be aprroximated by replacing the loading distribu-
tion near the wing tip by a single vortex having strength given by

( tan A

tan A
due to elliptic loading at the wing tip equals that of a single vortex.
Then the lateral location of a single vortex is at

and laterally located so that the downwash et 1 =0=0

% T+n tan A tan A
- ta A tan A
_ n / < T+ tan A l) (a22)
<'r+n tan A tan A
cos”
tan A
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Then the downwash becomes

w_o(w) .1 /—g(“
O ST

T+ tanA‘)
tan A

TR tanAI) T
tan A

T+ tan Al)
+ 1

iy
s/;<l tan A
o /1 'r+'q tanAl)
={1
+[ 2( * - tan A

} (l”flaiaiA ) i

tanA[ T . T +2n tan A :}G<T+n’canAD
T T2 + Q2 tan®A (7 + 24 tan A)Z + 02 tan®A tan A
(A23)

The downwash in Region IIT can be evaluated from equation (Al2),

then
( > Z 2bsn(}n (A2k)
11T _

n=1

For symmetric loading : . .
<%> = Z 2BenGn (A25)
IIT

where the value of 2Bgpn 1s the value of agn at T =« given by
equation (Alk).

Downwash due to rectangular span loading.- For rectangular span load-
ing the equations for determining downwash simplify considerably. Since
the loadlng is constant across the wing span, then in equations (3), (&),

and (5) one can substitute -flG'(ﬁ)dﬁ = G(o), and plus and minus values
(o]




of unity for f. The downwash equation becomes E
3

i -
T[T tan A - -(l——rl)- ] E
(1-q)[T-(1-n)tan A] _ cos<A e
W/V - _l_ 1-1 . 141 . Q® + (l'_n)E 2 +92/0052A . g:

og(o) k|82 +(1-n)® 0%+ (149)? S [7 - (L-1)tan A]® + (1-n)Z+0°

L
(14n) [T-(1-n)tan A) . (tT+2n tan A)[T tan A - 21 - (1-1)/cos®Al
Q2 + (149)% (v + 21 tan A)® + 0%/cos®A .

W 7 - (1-n)tan A)Z + (24n)2+ Q2

T(T tan A + n/cos®A) , (7 + 20 tan A)(7 tan A -21 + n/cos®A)
T2+ Q2 /cos®A (r + 2 tan A)® + 0% /cos®A
—— f (426)
J(T+ 0 tan A)2 + 92 + @

)

For § =0 equation (A26) simplifieas to
1, Jlr- (-m)ten A2+ (1-n) /L7 - (I-n)ten A]% + (Lem)®

v 1]
26{0) b |1 14 (1-1) (r + 2n tac A)(1 + 1)
2 tan AN (T+n tan A)Z + 12 .
. (A27)

(T + 21 tan A)

¢
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Compressibllity is taken intc account in the same manner as in the

previous section. At sonic speeds for the s§me reg%pns as before, equa-

tion (A26) reduces to

Region I:
W
= 0
2G(o)
Region II (for sweepback):
w /v tan A[ T . T+27 tan A ]
2G (o) 2x LT2 + g2tan®A (v + 21 tan A)® + QPtan®A
(A28)
Region II (for sweepforward):
w [V =_}_{ -1 L 1+M L tanga T +
2G(o) 2r W%+ (1-7)% Q2+ (1+1)2 - {712 + Q324an®A
T + 27 tan A J}_
(T + 21 tan A)2 + @2tan®A (A29)
Region IITI:
w/V 1 [ 1-q "~ 14 g ] '
—— == = * A30
26(o) 2x [Q% + (1-1)8 Q% + ()3 (430)

If the trailing vortices due to rectangular loading are not at the
wing tip (1 = 1) but laterally located at 1,, then the downwash is

obtained by substituting (o), ﬁT_’ HTL’ and n.‘l-, for G(o), T, 7, and Q,
c c e c
respectively, in the previous equations.
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APPENDIX B
VERTICAL INTERFPOLATION OF DOWNWASE

An spproximate vertical interpolation of downwash can be found by
using the method of reference 8 for small values of Q. In the present
report, the lnterpolation formulas for other values of Q will be based
on a fitted function of § +that fairs through the two known values of
downwash (Q = O and +0.5), approaches the function given by reference 8
for small values of {, and approaches the correct function for high
values of Q (e.g., ref. 7).

In reference 8 the downwash function is expanded in a Taylor series
starting from the vortex sheet:

where the subscript, o, indicates evaluation at Q = 0. Assuming the

trailing sheet extends fore and aft to infinity, the following relations
are derived in reference 8:

de dca 3%\ _ 4% (32)
2, AP ) an®

Now, for large values of Q, if T 1is small relative to £, the
downwash for any loeding distribution is given by

92_.‘12 E:.E

e(Q) = (B3)
2(0% + 92)2 =A
As Q becomes very large (compared to n), equation (B3) becomes
1 C
€@) = — — Bl
(@) 5o A (BL)
The derivative of equation (Bk4) gives
de 1 Cp
w @ (85)

It is desired to curve-fit a function of O +that approaches equa-
tion (Bl) for small Q, gives the known value of € at & = +0.5, and
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approaches equations (B3), (B4}, and (B5) for large Q. Assume the ¥
followling function:

2 3 .
> 2
€(Q) = €(0) + C," NV 1?92) +cf </ liia) + Ay </ 1?92> +
4 5 € '
/ a® /_a° A
fe l+92> A < l+92> +A4< l+ﬂ; (26)

8
Where the variable / & 1s chosen since déénwash can be_shpwn (by

1+ :
using eq. (A10)) to be proportional to this parameter for elliptic load-
ing at n = 0.

The coefficients C,* and Cp" are evalusted by taking the first
and second derivatives with respect to £ of equation (B6), which, at
Q = 0, give the values of equation (B2), that is,

* _ a%¢ ﬁ

32 :
* 1 d% S
. cl = dng ] c2 = - -——2 (BT)

a
dn

-

The four remaining coefficients of equation (B6) can be found by
using four conditions which the equation must satlsfy. One condition is
that it pass through the known value of € at Q = 1/2. Another is that
1t pass through the value of € at @ = 2.0 given by equation (B3). A
third condition is that at very large values of Q, the downwash must be
the value given by equation (B4). A fourth condition 1s that the slope
of the curve at very large £ be that given by equation (B5). The four
coefficlents (4,, Ay, Ag, and A4) 80 determined will be in terms of €0s

2 c
e(é‘-), a5 d—i, and —L. The next step 1s to evaluate the two deriva-

an2’ an2 TA
tives and EL.
A
To find Qf%: - _ : T
an
Now
a%a(9) _a6(9) &%  a%a(9) (gg)a | (28)
dn® a9 dn® g2 \dn

11t should be noted that st two semispans from the sheet the down-
wash is essentially independent of span loading (e.g., ref. 7, p. 165);

however, the downwash still has enough megnitude to make it useful in the
curve fitting.
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where

Then

55

a 1 a2
—q) . F] -——;P = - cossq) (39)
an sin @ dn sin®Q
d%6(9) _ _ cos@ daa(®) , _ 1  a%(9) (B10)
an® sin®9 49 sin®p 392

The derivatives of - G(®) are ob'l:ained from equation (Al). Then equa-
tion (B8) becomes

where

} _ o
azc(e
) n=1

cos “1% Wy sin b,
bug = m+1 Z ( * By sin ulq’v>—'—"

(

(-1)""

sinquv

Vsin 9,2 sin® @+ (cos @, - cos @, )cos cpv]

4

sin®Q, (cos Pp -cos P,)°

n(m+2)sin® Py -3 cos® @,

“

3 sin®*o,,

For symmetric loading,

m+1

azc (e -
‘_d—(é_)=" Z ly,Gn

!
n=1

(B11)
s 1 74 v
b (12)
sy =Y
J
(B13)
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where

(B1k)

ly, values are

given as follows:

Zvn

0]

0.383

0.707

0.924

-1.7934
5.6568
-25.2346

W o

21.0000

3.514k9
-16.5757
27.2308
-13.5139

-26.5029
40.0000
-19.6374
2.828L

100.7692
-19.1087
-20.4839

11.7199

with a36/dn® evaluated, the next step is to evaluate d&%¢/dn>.
The downwash of the two-dimensional trailing vortex sheet is gilven by
equation (A2). For =0, equations (A2) and (A3) simplify and become
(e.g., ref. 6, eq. (A19))

Z 2 g, 8in g @, sin yu @
2 1 1i'n 1
e(Q) = é G E : Bl
0 om+l sin @ (B15)
n=1 K=l
Then similar to equation (B1O)

d%e cos @ de 1 . 8%
= - —_—t —— — B16
an2 sin%9 49 sin“9 49° ( )

The derivatives occurring in equation (B1l6) are obtained by differ-
entiating equation (B1l5); then after summing up several resulting
summations, equation (Bl6) becomes

2
a €y

m -
z Ey,Cn

n=1i

TE " (BlT_)
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where

Ey,
n=y

Evn =

n#V

For s

where

- o+l [15 - (m® + 2m + 12) sinzq)v]
4 sinSq, .

-3 sin @ (m+1)2(-1)""VY cos Py
(m+1l)sin® @ (cos @ -cos @) sin?q,
(m+1)2(-1)*Y  2[1-(-1)"V1sinZ9,

+
cos @, -cos Q (cos @, - cos cpv)a
ymmetric loading
mL
d%e,, 2
d.nz = Z EVnGn
n=1i
By, + By ons n # n%l_
]?;:v =
n m+1
vy -
For m = T, the ﬁvn values are given as follows
Ey,
n 4 0 0.383 | 0.707 0.924
1 19.945| -L48.262| 241,673} 117k.TE3
2 | -67.883| 128.450 {-237.586 |~1791.706
3 | 173.6L1 {-17h.776( 81.739 | 1890.134
4 1-120.000| 89.112 0 -929.163

TN 3346
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5
} (B18)
(B19)
(B20)

The 1ift coefficlent can also be given as a summation of Gp.
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Thus

mty /2% sin @, n 4 m+l
cy 2 w1l 2
- z Gy (B21)
= X _ = m—+l-
n=1 \ I s n 5

For m = 7, the factors of Gp in equation (B2l) are as follows: _

n 1 2 3 b
factor|0.3006{0.5554f 0.7256] 0. 3927

As mentioned before, the coefficlents of equation (B6) (A:u Aoy Ag,
end A,) are in terms of €(Q), eél/Q), d%e/an®, d®%¢/an3, and Cr/mA. Tt
has Jjust beéen seen that d%G/dn®, d%¢/dn®, and Cr/nA can be expressed
in terms of summations with Gp. Thus, equation (B6) can be written in

terms of &/ 0%/1+0%, €(0), €(1/2), and sumations of Gn. The equation
can now be algebraically rewritten into the form

o+l

() = ¢, €(0) + C2.e<%> _+_i— DnCn (B22)
n=1

where the constants C,, C,, and Dp contain the Q2/1+0% ‘terms and
the integration coefficients of a°G/an?, a%¢/an®, and Cr,/A. Letting

X = & 92/l+02, the constants are:

¢, = 1 - 172+;11~/3 3 4 539+§82_f§ 5 610+§31ﬁ = 235+goﬁ &

(B23)

Q
Y
It

T (543430 B2 (354 130" +25 (54 2905~ 22 (15 4+ 50500°

(B2L)
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Dy = _(X _ Lmhlanfg X3 4 98+l_°:9~/3 2 _ T%Miﬁxs . 20+lu5ﬁ Xe> B,

-+

_1._21&+3:\/3 :3_7+6'/_5-4 lO+3Jg'S_2 e)-
<2X+ T ki e e

{[m'«fs‘ x® - 99215 o | (00,93 x5 - 3241545 Xs:] .
2 Iy L

[— 22 (20+94/5) X° + 22 (85+384/5) X* - 22 (110+494/5) x5 +
16 16 - 16

2 sin @, n 4 m+l
17 2
125 e (4-13) &
=2 (9+b X B2
— (9+44/3) :l()'H'TIZ)Z (B25)
i 3 n= ﬂ
m+l 2

For m =7, values of C,, C,, and Dy are presented in teble II for
various values of Q.
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APPENDIX C -

DEVELOPMENT OF EQUATIONS PERTATINING TO -
THE ROLLING-UP CORRECTION
This appendix includes the downwash due to a flat trelling sheet o
alone, downwash due to a pelr of trailing wing-tip vortices, and a

reduction to more convenient form of the "rolling-up distance” of refer- L
ence L. . : -

Downwash Due to & Flat Tralllng Vortex Sheet Extending
From the Quarter Chord of the Wing Tip to Infinity

The downwash can be obtained from equation (1) by setting

X - (3@_)_ tan A (c1) -
/(x - -;—’ tan A)a + (;«f-;;"r)2 + (z-2g)2

cog 6, =

In dimensionless coordinates, the downwash becomes

1 -
_1 (n-f)at (R)af _
T [1 a2 + (n-7)2

<=

1 1 n - ﬁ g - tan A G'(_)d_— (02)
~ - =3 |- — ' e
2x o 0%+ (n-7)? J (E-tan A)Z + (n-7)2 + @2

The first integral is integrated analytically in Appendix A, and is given
by equation (Al12).

The numerical integration of the second integral can be performed o
by following the procedure of Appendix A. Let _ ) - e e

__ n - 1- £ -tan A
2% + (3-7)2 ¥ (E-tan A)Z + (1-7)2 + 02

Loy (c3)
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then the second integral of equation (C2) becomes (ﬁ = cOS @ = COS _—=
m+1
1 T Y
" o f LpuG' (9)d9 = Z &prnCn (ck)
© n=1
where M1
2
- l -
&m = 7 SaeL) Z Fou(lpu - Impa-w) (03)
p=0

where fpy values are given under equation (ALk).

For the case of 17 = Q = 0, the second integral of equation (c2)
can be handled in much the same fashion as equation (A2) and with the

same limitations. The vorticity distribution is given by equation (A1)
which for symmetrical loadings becomes

m o N
aG(o) 2 z 2
—r L =l -1 cos +
ap  msl ( m1 ) ua (-1) K@
2 /u,=1,0d4

m

-1
m
2 i Gn z n, sin p @, cos p;® (cé)

n=1 =1,044

With equation (C6), the second integral can be written as

n
1
- b LGt (9)ae =

G 4T (512-—) 3
s d e famaa].

2 .
H1=1,0dd °©
m-1
= o m T
G —= sin ¢ L cos d C
Z %1 (me1)w Z - ¥n f T ha® a9 [ (CD)
n=1 py=1,0dd o
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Now, for @ =1 =20

Tt
7 .
1 £ - tan A
L cos d¢ = - . —
Th 19 f 1 cos W.P 4@
"/c: cos P N (E-tan A)Z + cos2Q *
' 7 cos a
= xn sin ul<§>-(§-tanA)f By P A9
Yy cos O(E-tan A)2 +cos2Q
(c8)
The integral remsining in equation (C8) can be written ast
T n/2
cos da. ' cos M. P 4P
f Hi? 99 = 2k f — (c9)
o cos oaf (E-tan A)2 + cos®P o cos ®4/1-kZsinZp
where
k = 1 ) - -
1+ (E-tan A)2
This integral is evaluated by a recursion method.
For odd values of H,
cos W, 9P Mq-2 ;_Ll-l 2 p.! cos (u;—E‘L)Cp
—_— 2 co Z = (c10)
cos ¢ 11 (My=-1)! cos @
Hence,
ﬂl'l
! D
My, z MHy® Yuy-21
D =2 kR Cll
Lot l‘1'1 ) 1! IJ-_'L'Z) 1 ( )

1The integration of equation (C9) was obtained with the aid of
reference 16.
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where

n/2 c d
Dy, = 2k f o5 Bip °F (c12)

1
A cos @/ 1-k®sin®9

! 5 n:r/z cos " Yp do (013)
.= —_— c13
1
(”12 ) JO 1-k®s1n2Q

For M, =1 and b, = 3, equation (C13) integrates directly to

Dl
Ro = % K
Ry = 55 [8 - (1P)K] (C1k)

where K and E are complete elliptic integrals of the first and second
kind, respectively. Higher terms of R f1,-1 can now be obtained from the
recursion formula: —z

(c15)

R<u12—1> = (p?l)k—z (g -%) (l'kz)R(‘i:.a'_5>+ (ky-3) (2k2'1)3<_p;_-s

With values of R (TS determined, the values of Dul are obtained

2
from the recursion formula of equation (Cll). Then

D, = 2kK . : : )

Dg = - i-[(h - ¥°)K-LE]

Dg = 3}2;_3[(32 - 20k® + 3k*)K - L(8 - k2)E] >(016)
D, = - 1;5[(512 - 608k2 + 216k* - 15kS)K - (512 - 352k2 + 72k *)E]]

where k follows equation (C9).
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Thus the second integral ls evaluated exactly for £ =1 = O and,
in summary, is given by

U
1 . _
- 5;‘4? LG’ (9)dP

S S| ()

o e P G L TN
<—§_ BT T, 088 _

m-1

5 m
Si Gp }; pt18in @ | * 8in Plg —(g-tan.A)Dul (Cl7)
(m+1) =
n=1 Hy=1,0dd

vhere the Dy  values are given by equation (C16) and for higher values
of u; by the recursion formula of equation (cii).

Simllar to the work of Appendix A the downwash, given by equa-
tion (03), can be expressed as the sum of the products of influence
coefficients and values of the loading distribution, or

<1

where | | - |

M-1
1 2
2(M+1) &

The coefficlent, Bgp, follows equation (Al4). Similarly, fnu also
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follows equation (Alk)
-9 € - tan A
Algy = — 17Ty — |2 -
Q= + (n-nu) | W (g-tan A)2 + (n-fi)® + @°
n+, E - tan A
2 = \2 —
o® + (n+fip)= | W (E-tan A)Z + (n+A )2 + @2
[IRs
y = cos —=
For n = Q = 0, the analytical integration which evaluates aq, is
r‘
2(E-tan A m+1
(——) #Du,sin py o, n #—=
(m+1)w ioad 2
aqy, = Bsn *+ 1 (019)
: o -
-tan A z 2 m+1
= Dy (-1) n = ZL
(m+1) % v ’ 2
p, =o0dd
where Dy, ~ values are given in equation (c16).
Downwash Due to Two Trglling Vortices
ILet the lateral position of the two vortices be at 7 = &7, where

Ne 1s the fraction of wing semispan from mid-wing to the center of the
wing tip vortex. The downwash equation is obtained by substituting

Me
f o' (T)ai = &(0)

o - -
Plus and minus values of 1n, for T, and 7n.b for b 1in equation (c3).
Then '

£ - tan A
1+ +

J (&-tan A)2 + (n,-n)2 + 02
€ - tan A
1+
N (E-tan A)Z + (ng+m)2 + @3

_ G(0) Mo =T
2n 92 + (nc_n)z

<}

Mg+ 1

Q% + (n,+n)3 (c20)
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Now, n, can be absorbed into coordinate parameters, then

RLE 1 'l'l' . (%)
@l T T
1+ L 2 ﬁ__zen_ﬁ)

) ) i O RE NG,

(c21)

Roll-Up Distance, &, -~ &,

The longitudlnel dilstance at which the vortex sheet is essentlally
rolled-up is a function of wing loading, 1lift coefficlent, aspect ratio,
and sweep. The roll-up dlstance given in reference 4 is given by (when
the coordinates are changed to the present notation),

5.05(1 - Tlcoo):s/z

E -£E =
cC O 1im c(9) (c22)
' EO./l—cosq)

where - Eo represents the start of the rolling-up process.

A simple numerical method for evaluating the denominator of equa-

tion (C22) is as follows. The loading distribution is given by the
series

(o) = m+1 ji }; sin p1,@, sin u,¢ (c23)

+
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With equation (C23), the denominator of equation (C22) becomes

lim

G(9P)
P—>0 [l coso mtl
n=1 =1
m
ﬁi 2/
= Gp :
m+l .
n=1

For symmetric loading for which Gy
equation (C24) becomes

lim

a(e)

Z i sin p @, ; o

p'l=1

m

P—>o /Jl-cos P B

m

The summation, z

follows:

let

then,

IJ-1=Oda.

o=

py Bin p,@p

)

p1=0dd

GH

. 8in M9y, in equation (C25) can be evalusted as

1P,
Z =e

= imaginary

part of

1 510 1 ®Pn

By 81n pa@p

= Gpyqy

b
Hy8in pp 5 G(m+1)
2

= cos @, + 1 sin Py

sin p. @

——
/1-cos @

_ =(m1)(-1)°

2 sin @,

-p @nd p; 1is only odd,

(c

67

(cak)

(c25)

26)
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With equation (C26), equation (C25) becomes _ -
m-1 )
2 n
lim &) JE }; (-1)" 6y
——L—=-4J2G6 . -2J7 ) —o (c27)
g—>0 ,/1..cos o (E£¥> oy sin @, _

Equation (C27) inserted into equation (C22) gives

5.05(1- ng, /2

m l
(-1 ey
VG - 2VE Z
) sin @y
For m =7 equation (C28) simplifies to the following: -
(1- e )" :
b - Eo = —— -

1.4630 G - 0.7917 G, + 0.6060 G4 - 0.2799 G,

" (2)

B 0.7315 K1 - 0.3959 Ko + 0.3030 Kg - 0.1400 X,

where the subscripts pertain to span stations n=12, 3, and hs or
1 '= cos %—“ = 0.9239, 0.7071, 0.3827, and O, respectively.
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. TABLE I.- LATERAT, INTERPOLATION FACTORS
) a0 | 0.098 | 0.195 | 0.290 | 0.556 | 0.831 | 0.981
H, [0.0030{0.0089]0.0102|-0.0449{0.3378] 1.6982
Ho {-.0178(-.0538{-.0645| .Lb365| .9777|-1.360k4
Hy |..1086| .3916} .7361} .8790{-.5861] 1.3155
H, | .9061| .6533| .3182| -.2706| .2706]| -.6533
Hy+Hp |-.0148|-.04k9 |~ 0543 | .3916] --- -
TABLE II.- VERTICAL, INTERPOLATION FACTORS
) Q a
0.1 +0.2 | +£0.3 +0.8 +0.1 +0.2 +0,3 0.8
* For all 1 n Dn, n = 0.707
Cy| 0.9611| 0.7819{ 0.5005|-0.1947 1| 1.5928 | 1.7007| 1.1502{-0.4075
Co| .0522| .278hk 59861 .9978 |2} -2.7584 | -3.2636| -2.3921| 1.0580
0 D _ 3| 1.h504) 1.7888} 1.34kh7| -.6115
n, 1 =0
b -.2506| -.3236} -.2566| .1384
1 .0973| .0932{ .0559} -.0029 || _ Dp, 1 = 0.92k
2| -.2957| -.2788] -.1699| .0591
31 1.6725| 1.9224| 1.3752| -.5490 {| 1 [-11.8776 |-17.8814}-15.0373| 8.4886
b {_1.4618}-1.7h12|-1.2816| .5816 ||2| 6.6138| 11.9406| 10.8359|-6.7796
n - 0.28 3| -3.5043 | -7.9690| -7.7815| 5.3097
Dn, n = 0.353 Li 1.5814| 3.7283| 3.6751|-2.525L4
1| -.1667| -.1392| -.o734| .o125 |
2| 1.0587} 1.1846| .8303| -.3137
3 [-1.8423|-2.1540]-1.5653 | .6952
I .9066| 1.0512| .7570]| -.8976
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TABLE IIT.- fnu: FOR SEVERAL VALUES OF m AND M
p(for m = 17)
M=T7|M=15|M=31| n=1 |n=2"|{n=3 |n =L
o} o . 0 2.6131 |-1.4142| 1.0824 |-0.5000
— - 1 4,5889 [-2.1053| 1.5663 | -.7193
~—- 1 2 2.884L | -.2363]| .0751] -.0253
——— ——— 3 6573 | 2.0046 |-1.5402 | .7109
1 2 L -l.h1k2 ] 3.6955|-2.k1k2 | 1.0824
--- -—- 5 -2.7625 | k.1506|-2.0037| .8553
--- 3 6 -3.1207 | 3.1958! -.3621{ .1005
- ——- 7 -2.5843 | 1.2224} 1.8601| -.8209
2 4 8 -1.5307 [-1.0000| 3.6955 |-1.4142
—-— _— 9 -.4383 |-2.6609| 4.2950 |-1.284}4
-—- 5. 10 .311k (-3.2465| 3.3216| -.3367
-- -—- 11 5651 |-2.72881 1.1207 | 1.1k92
3 6 12 h1k2 11,5307 |-1.41k2 | 2.6131
- ——- 13 .1016 | -.2939(-3.2260| 3.4397
- 7 1k -.1258| .4372(-3.5579| 3.2212
-—- -— 15 - by | (4635 1-2,2904 | 1.9416
m=M-=15
pln=1f{n=2 |n=3 n=4!in=%5 |n=6 [n= n=28
0f5.1258{-2.6131] 1.800 |-1.hik2| 1.2027}-1.0824| 1.0196|-0.5000
1|-2.6131] 6.9258}-4.0273 | 3.0027 |-2.4966| 2.2223 (-2.0824| 1.0196
2]-3.3258|-1.41k2} 6.3285{-3.6955 | 2.8196 |-2.41k2 | 2.2223]-1.082k
3] 1.1989|-3.9231|-1.082k | 6,145k |-3.6131| 2.8196 [-2.4966| 1.2027
L] -.5973] 1.5307|-4.2062 {-1.0000 | 6.1454|-3.6955 | 3.0027|-1.k142
5| +3318| -.7804| 1.6131 |-4.1062 |-1.082k| 6.3285 |-4.0273| 1.8000
6 -.1831 .hik2| -,7804 | 1,5307 {-3.9231|-1.k142| 6.9258|-2.6131
7| .0824| -.1831{ .3318} -.5973| 1.1989-3.3258 {-2.6131| 5.1258
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